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Introduction

1. Introduction

One of the largest branches of modern optics is laser technology, which offers a wide range
of applications in industry, medicine and research. In particular, the generation of sub-
picosecond laser pulses has greatly expanded the possibilities for the application of laser
systems. An important milestone in the development of pulsed laser systems was the
chirped pulse amplification (CPA) principle developed by STRICKLAND and MOUROU in
1985 [1], which earned them the Nobel Prize in 2018. The high peak powers that can be
achieved by lasers employing the CPA schemes are used e.g. for experiments aiming at
laser-driven proton acceleration. Such experiments are performed at the high intensity
laser system POLARIS (Petawatt Optical Laser Amplifier for Radiation Intensive Exper-
iments) which is operated at the Helmholtz Institute Jena. In order to characterize the
plasma conditions during such experiments very precisely, an independent pump-probe
setup is currently being developed. With this setup the precise characterization of the
formation and temporal evolution of the plasma target becomes possible. For the plasma
characterization setup, a CPA system consisting of a pulse stretcher, regenerative ampli-
fier and pulse compressor is being developed.

In order to characterize the pre-plasma, knowledge of the temporal shape of the laser pulse
is important. One of the main big issues is the measurement of ultra short laser pulses
with durations of 50 fs, which is shorter than the response time of any electronic detector.
In order to measure such kind of laser pulses, a reference pulse with a comparable duration
can be used to sample the pulse to be measured by a suitable detector. Such a sample
pulse can be the pulse itself or another well characterized femtosecond laser pulse [2]. Tt
is important to measure both amplitude and phase of the spectrum, although it is usually
not possible to measure the latter directly. One of the most effective methods of laser pulse
characterization is called spectral interferometry (SI) which was pioneered by FROEHLY
et al. in 1973 [3]. It offers the possibility to measure the spectral phase and has attracted
the attention of researchers because of its large sensitivity and high spectral resolution.
ST has many applications in spectroscopy [4], plasma probing [5], characterization of
dispersion, studies of nonlinear processes [6], materials and characterization of crystals [7].
SI is also the basis for new techniques of spectral phase measurement, such as frequency
resolved optical gating (FROG) [2] or spectral phase interferometry for direct electric field
construction (SPIDER) [8].

In section 2 of this Bachelor thesis, the fundamentals of ultrafast optics based on MAX-
WELL’s equations are presented, Gaussian beams, optical pulses and their propagation
in dispersive media are introduced. The method of spectral interferometry (SI) is funda-
mentally introduced and explained in section 3, different possibilities for characterizing
the spectral phase are presented. The experimental setup for the characterization and a
referencing measurement to well characterized materials is done in section 4. It is also
investigated in section 4 which experimental issues can occur, how large their influences
on the measurement are and how they can be resolved. The derived methods of spectral
phase characterization are used in section 5 to specify the optical components of an am-
plifier in a CPA laser system. The components of the laser amplifier are categorized and
their effects on the spectral phase are compared and discussed. It is then summarized
why dispersion measurements are important and how the method of SI can be utilized to
select suitable components for a laser amplifier.



Fundamentals of ultrafast optics

2. Fundamentals of ultrafast optics

In order to understand the technique of SI and its fields of application, a basic under-
standing of the fundamentals of ultrashort pulses is required. At first, electromagnetic
waves and their propagation are introduced, which are the basis of all kinds of laser radi-
ation. Subsequently, the spatial and temporal properties of laser radiation and especially
the propagation of ultrashort pulses are described. The propagation of laser pulses in a
material is subject to dispersion depending on the refractive index n(A) of the medium
which is a function of the wavelength A\. The dispersion is characterized by the spectral
phase, which can be retrieved by measuring the spectral interference of two pulses, which
appears as fringes in the spectrum.

2.1. Fundamentals of electromagnetic waves

All kinds of electromagnetic radiation can be described by MAXWELL’s equations. These
are a set of relationships between the electric field E(r,t) and magnetic flux density
B(r,t). Inside a medium the fields affect the bound charges and currents of the material
which lead to the displacement field D(r,t). Using these fields MAXWELL’s equations
can be written as follows [9]

V-.D(r,t)=p (2.1a)
V.-B(r,t)=0 (2.1b)
V x E(r,t) = —;B(r,t) (2.1¢c)
V x H(r,t) = g(r,t) + gD(’r,t). (2.1d)

ot

The quantities o(r,t) and j(r,t) are the free charge- and current densities, respectively.
The displacement field D(r,t) and magnetic field H (7, t) are given by

D(r,t) =coE(r,t) + P(r,t) (2.2)
H(r,t) = :O(B(r,t) _ M(r1)). (2.3)

The response fields of the bound charges in the medium are described by the polarization
P(r,t) and magnetization M (7,t). The field of optics is generally concerned with non-
magnetizable media which means M (r,t) = 0.

Assuming a medium without external charges and currents (o(r,t) = 0,3(r,t) = 0),
MAXWELL’s equations can be used to describe the radiation fields. Taking the curl of
equation (2.1c) and subsequently using (2.1d) and (2.2) results in the wave equation

1@2 2

)
AB(r,t) = 555 B(rt) = s Plr,b). (2.4)

The polarization P(r,t) can be connected to the electric field via the DRUDE-LORENTZ
model which assumes the material to be an ensemble of non-coupling, driven and damped



2.1 Fundamentals of electromagnetic waves

harmonic oscillators [10]. The response of the bound charges to an incident electric field
can be described in the frequency domain which introduces the susceptibility x;;(r,w)

Pi(r,w) =¢e0 > xij(r,w)E;(r,w), (2.5)
J
where 7,7 = x,y, 2z are the directions in the three-dimensional space. For a linear, ho-
mogenous, isotropic and dispersive medium the susceptibility is constant in the material
and depends linearly on the electric field

P(r,w) =ecox(w)E(r,w). (2.6)

Plane waves and Helmholtz equation

A special form of electromagnetic radiation is a laser beam, which is characterized by its
high spatial and temporal coherence properties. The laser beam is generated by stimulated
emission of photons in a medium, in which the atoms are in an excited state and can release
their excess energy spontaneously or stimulated by photons. The laser-active medium
must be such that a population inversion of the excited states in the atoms occurs when
external energy is supplied. If more photons are emitted stimulated than absorbed by
the material, incident radiation can be effectively amplified. The resulting coherent laser
beam can be described in the time domain with a monochromatic wave of the angular
frequency w. The time dependence can be written in the following form

E(r,t) = Ey(r,t) exp(—iwt), (2.7)

where Ey(r,t) is the envelope of the electric field. All measurable quantities can be
obtained by taking the real part of the complex components. Using (2.7), MAXWELL’S
equations can be expressed in the frequency domain by replacing the partial time deriva-
tive 2 with —iw [10]. The wave equation (2.4) thus results in the HELMHOLTZ equation
2
w (2.6)
AE<T7 CU) + gE(T, w) = —CUQ[,LO{-:OX(W)E('I", w)

e(w)w?

1
E(r,w)=0 with e(w) =1+ x(w), - = Hogo. (2.8)

AE(r,w) +

2
The refractive index n(w) is defined as the ratio of the speed of light in vacuum to
the speed in the medium. Equation (2.8) shows that ¢? is reduced by e which implies
n(w) = y/e(w).

A special solution of the wave equations (2.8) and (2.4) are plane waves. They describe

a wave where the spatial extension of the electric field is constant over any plane perpen-
dicular to the propagation direction

E(r,t) = Eyexpli(k - r — wt)]. (2.9)
Plane waves fulfill the HELMHOLTZ equation (2.8) if the dispersion relation
n(w)w
k{w)] = " (2.10)

holds, which connects the absolute value of the wave vector k(w) (its magnitude is in-
versely proportional to the wavelength \), to the angular frequency of the electric field.
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2.2. Gaussian beams

In order to combine the properties of ray optics, which describe the propagation of light
rays in optical systems, with wave optics, GAUSSIAN beams are introduced. In general
a laser beam can be described by a continuous superposition of stationary plane waves
with different wave vectors k [10]

E(r.t) = /Eo(kz) expli(k - 7 — wt)] d*k (2.11)

GAUSSIAN beams are a solution of the HELMHOLTZ equation (2.8) and feature a special
transversal shape of a two dimensional GAUSSIAN function [11]. Due to diffraction effects,
the laser beam diverges during its propagation, but the (GAUSSIAN shaped transversal
profile remains. The complex amplitude E(p, z) of the GAUSSIAN beam, expressed as a
function of the propagation coordinate z and transversal coordinate o0 = /2> + y? can be
written as [12]

o Wo 0’ . 0 z\?
E(o,z) = EOW exp <_w(z)2> exp [—1(!{:2 + k2R(z) + arctan <ZR> )] (2.12)

The beam radius w(z) is defined as the distance from the propagation axis at a certain
value z, at which the amplitude of the electric field is reduced to 1/e of the maximum
value and R(z) is the radius of curvature of the wavefront due to the divergence of the
beam. They are defined as

w(z) = woy 1 + (;)2 R(2) :z[1+ (Z:ﬂ (2.13)

10

z/zR z2/zR

Fig. 2.1: Representation of beam width w(z) and radius of curvature R(z) of Gaussian beams
as a function of propagation length z in units of the RAYLEIGH length zpg.

and are depicted in figure 2.1. The quantity zg is called the RAYLEIGH length and
describes the distance to the focal plane (at z = 0) where the beam size has increased by
the factor v/2. Tt is defined as

Twa

= —, 2.14
R= (2.14)



2.3 Optical pulses

The measurable quantity of a laser beam is the intensity I, a physical quantity describing
energy per area and time. It can be written mathematically as the magnitude of the time
averaged Poynting vector S = E x H, which describes the density of the energy flow.
For nonmagnetic materials the intensity can be written as [9]

1
I =|(E x H)| = Seoc - n| Byl (2.15)

Therefore the temporal intensity I of a laser beam is proportional to the square of the
momentary magnitude of the envelope Ey of the laser beam.

2.3. Optical pulses

Experiments and applications that require high peak intensities instead of high average
power are not feasible with continuous wave lasers. For this purpose, ultrashort laser
pulses are used. Such a laser pulse is a superposition of laser beams with different fre-
quencies w [10]

B(r,t) = / / Bo(k, w) explill - 7 — wt)] Pk dw (2.16)

R3 —o0

In a laser resonator of length L and effective refractive index n this is achieved via the
mode locking technique which synchronizes the phase of all longitudinal modes (mA = 2nL
where m is an integer) [12] that can be amplified in the resonator. For a linearly polarized
temporally GAUSSIAN shaped laser pulse the electric field can be written as [10]

E(t)= ;EO exp(ip(t)) exp l— <i)21 + c.c.

. (2.17)

2
= Eycos(¢(t)) exp l— <) ] :
T
The pulse and its envelope are shown in figure 2.2. In the frequency domain the electric
field of the pulse can be described as the Fourier transform (FT) of the electric field in
the time domain and vice versa

E(w) \/ﬁ / ) exp(—iwt) dt (2.18)
E(t \/ﬂ/ w) exp(iwt) dw . (2.19)

Assuming ¢(t) = wpt and substituting (2.17) into (2.18) yields

E(w) = EOQ\T/§ (exp(—W) + exp (—W)) (2.20)



2.4 Spectral phase and dispersion

The electric field E(t) (2.17) in the time domain is assumed to be a real function, therefore
it has HERMITIAN symmetry F(E(t))(—w) = F(E(t))*(w) [12]. Since the spectrum (2.20)
is also real, the spectrum must be symmetric for positive and negative frequencies, which
means that positive and negative parts of the spectrum contain the same information.
Therefore it is sufficient to consider only the positive frequency component.

Analogous to (2.15) the spectral intensity S(w) is defined as the square of the magnitude
of the electric field in the frequency domain. According to (2.20) it can be written as

S(w) o |E0|2exp<—7—2(w4_wo)2>2. (2.21)

The bandwidth of the pulse and its pulse duration can be characterized by the time-
bandwidth product, which can be determined by measuring the intensity full width at
half maximum (FWHM) At of the pulse and of its spectrum Aw. For GAUSSIAN envelopes
the bandwidth product is [9]

2In2 A
At-Av=""% 0441 with Av = ==, (2.22)
s 2
T I I
1) —E®) || 1 — E(w) |
H N I(t) S(w)
$ =
; R M -
= oy oo =050 f— h
= oI 3 =
=1 =1
—1) | 0
| | | | | | |
—-0.5 0 0.5 1.6 1.7 wo 1.9 2 2.1
time ¢ in ps angular frequency w in 10'° Hz

Fig. 2.2: Electric field (light blue) and the enveloping GAUSSIAN amplitude (blue) of a pulse
with 7 = 25fs and wg = 1829 THz (\g = 1030nm). The orange curves are the
temporal and spectral intensity with the FWHM criteria.

2.4. Spectral phase and dispersion

Until now, optical pulses have only been considered as electric fields in the time or fre-
quency domain with a limited temporal or spectral amplitude. Now a quantity is sought
which can adequately describe the change of the temporal shape during propagation
through an optical medium. For this the complex FT of the temporal pulse shape ac-
cording to equation (2.17) with the arbitrary phase ¢(t) is considered. The result can be
separated into its spectral intensity S(w) and spectral phase p(w)

E(w) = /S(w) exp(—ip(w)). (2.23)



2.4 Spectral phase and dispersion

In general the phase ¢(t) of the pulse is a periodic function that specifies the oscillation
and its frequency of the electric field as a function of time. In case of the spectral phase
¢(w), it describes the time difference of the frequencies w, therefore it contains time-
versus-frequency information. For a constant phase ¢(w) = 0 all frequencies oscillate in
the same phase, which means that all have a zero crossing (in the same direction) at the
same time. It is often helpful to expand the spectral phase into a TAYLOR series and
analyze its components

1 2

) = glet) + )| @msn) b g el b (220
1. The spectral phase coefficient of zeroth order is called absolute phase and describes
the phase of the carrier wave with respect to the envelope. Since the duration of
the optical cycle (T = ¢/ ~ 3.4fs for A = 1030 nm) of a pulse is much shorter than
the pulse duration 7 ~ 50fs considered in this thesis, the absolute phase can be
assumed to have negligible influence. However, when the pulse is only a few cycles

long, the absolute phase matters [2].

2. The first order term of the spectral phase corresponds to a temporal shift of the
envelope in the time domain. A positive ¢'(wg) corresponds directly to a shift
towards later times [11]. This can be described with the Fourier transform shift
theorem which says that

FE({t —7)](w) = E(w) exp(—iwT). (2.25)
This time shift is called group delay and is defined as 7¢ = ¢'(wy).

3. The coefficients of higher orders are the quantities that cause changes in the temporal
shape of the electric field. The second derivative of the spectral phase ¢”(w) is the
dispersion of the group delay and often called linear chirp. It mainly causes an
increase of the pulse duration and is defined as:

d2
group delay dispersion GDD = @gp(w) . (2.26)

wo

Third ¢® and fourth ™ order coefficients cause additional distortions of the pulse. They
are subsequently named third order dispersion (TOD) and fourth order dispersion (FOD).
Even orders of the dispersion cause symmetrical effects on the pulse, while odd orders
lead to asymmetrical distortions [2].

The name of the GDD already indicated that dispersion effects will cause second order
terms to appear in the spectral phase. The reason is a dispersive medium, which causes
effects such as pulse stretching. The medium can be characterized by the susceptibility
X(w) to an electric field and subsequently the refractive index n(w), which is connected to
the magnitude k(w) of the wave vector via equation (2.10). Expanding the wave number
k(w) into a TAYLOR series around the central frequency wy results in

1d2k 2 2.27

wo wo

k(w) = k(wo) + d(i)k‘(w) (w— wp)
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The derivative of the wave number with respect to frequency is closely related to a known
quantity to characterize a wave packet, the

1
group velocity — = —Fk(w) (2.28)

Vg dw

wo
The second derivative describes the change of the group velocity with respect to frequency
and is therefore called

d2

group velocity dispersion GVD = ﬁk(w)
w

(2.29)

wo
It characterizes the dispersive medium and determines how the medium affects the dura-
tion of an optical pulse with the center frequency wy. The group velocity dispersion (GVD)
is the quantity of interest when describing the optical properties of a dispersive medium.
If there are no higher order dispersion effects the pulse is called linearly chirped. The
effects of the GVD on an optical pulse are shown in figure 2.3.

E(t) E(t)
blue

I T

Fig. 2.3: Principal depiction of the amplitude of the electric field E(¢) and its envelope (black)
according to (2.17) without a chirped temporal phase ¢(t) o ¢ (left) and with a
linearly chirped temporal phase ((t) oc t? (right).

Travelling through a medium of length L with k(w) = n(w)ko, the pulse accumulates
phase according to ¢(w) = k(w) - L, which implies the following relation

&y _ &k
dw?  dw?
= GDD(w) = GVD(w) - L. (2.30)

To characterize the propagation of a short laser pulse, the time evolution of the GAUS-
SIAN envelope is considered. In a normal dispersive medium the pulse duration 7 of the
GAUSSIAN pulse increases with time. This can be characterized by [12]

B 2\2 7

T(2) = 704/ 1 + <Zo> W= EvD (2.31)
Since the pulse contains different frequency components the group velocities v, differ for
different frequencies. For normal dispersion (GVD > 0) the larger (blue) frequencies
propagate slower than the shorter (red) ones. This means that red arrives earlier at
a certain value for z than blue, which is illustrated schematically in figure 2.4. These
differences of the group velocity lead to a steady stretching of the pulse in the dispersive
medium.
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z=0 z>0

‘ = red ‘ blue

t t

Fig. 2.4: Schematic representation of the pulse stretching during the propagation in a dispersive
medium.

GVD of an optical material

If an electromagnetic wave propagates through a typical dielectric medium multiple res-
onances occur which correspond to different lattice and electronic vibrations. The sus-
ceptibility y of the material arises from a superposition of contributions from these reso-
nances [12]. Using the relation n? = 1 + y, the dependence of n on the wavelength A can
be approximated using the SELLMEIER equation

B1)\? n By\? n B3\? n
N—=C XN=C, XN-=-C3

n*(\) =1+ (2.32)
To calculate the GVD of a material, the wave vector k is expanded into a TAYLOR series
around the centre frequency wy expressed as a function of the refractive index n. The
wave vector k is connected to the refractive index via the dispersion relation (2.10). Using
equation (2.27) it therefore follows

nw)w  n(wo)wo  d n(w)w 1 [ 2n/(wo) + n"(wo)wo 9
PR mcwf‘”‘%)*g[ : (@ =wo) .
—GVD
(2.33)

A commonly used optical material is fused silica, for which the SELLMEIER equation
was experimentally measured in [13]. The derived coefficients are given in appendix A.
Using equation (2.33) the GVD of fused silica at Ay = 1030nm can be calculated by
differentiating equation (A.1) with Mathematica [14] which results in

2/ (wo) + 1" (wolwo _ yg g B5° (2.34)
c mm

GVD ((,U()) =



Spectral interferometry

3. Spectral interferometry

The goal of this thesis is the characterization of the optical components of a laser amplifier.
The information how a medium affects the laser pulse can be found in the refractive index
n(w) and because of (2.10) also in the wave vector k(w). As already mentioned in the last
section, the pulse accumulates phase according to ¢(w) = k(w) - L in a medium of length
L. Therefore, the dispersion effects are contained in the spectral phase. Since the phase
cannot be extracted directly from the intensity spectrum S(w), an interference method is
used. The spectral components of two time-shifted pulses can interfere with each other,
whereby the spectral phase is imprinted on the intensity spectrum. The interferences
occur as fringes in the spectrum, which is shown schematically in figure 3.1. Analyzing
the spectral fringes can be used for a determination of the delay ¢, and the spectral

phase.
|E1<w>|2/\ N
— — t() |E1(UJ) + EQ(CU)|2
PAGI /\—/

Fig. 3.1: Sketch of spectral interference between two laser pulses with a (GAUSSIAN spectrum,
one of which is delayed by .

3.1. The method of spectral interferometry

The method of spectral interferometry (SI) is mainly used to obtain the spectral phase
difference of two GAUSSIAN pulses. In this method, two single pulses E(t) and FEs(t)
interfere to form an interference pattern, which can be described mathematically as a
superposition of two single pulses. Since the FT is linear, the spectrum S (w)! can be
written as

S(w) = |Bi(w) + Ea(w)[?

(2:23) |me_i‘p1(“) + /Sy (w)e P
= S1(w) + S2(w) + 24/S1(w) 2 (w) - cos(p1(w) — @a(w)). (3.1)

It is assumed that the spectral intensity of both pulses is the same S;(w) = Sy(w) = S(w).
By introducing a delay ¢, and using the Fourier transform shift theorem (2.25) a time
delayed pulse E(t — ty) transforms to E(w) exp(—iwty). The delay can be separated from
the phase ¢1(w) and therefore the spectrum can be written as

S(w) & 2.5(w) [1 + cos(1(w) — wa(w) + wto)] (3.2)

(221) exp (_w T

IThe frequency w describes the shift w = w’ — wy to the central frequency wy.

) [1+ cos(Ap(w) + witp)], (3.3)

10



3.1 The method of spectral interferometry

where Ap(w) = p1(w) — p2(w) is the phase difference of the two GAUSSIAN pulses. The
cosine indicates that depending on the delay ¢y of the pulses, a periodic change in the
amplitude can be observed. These spectral fringes are the key for SI. The fringe distance
is inversely proportional to the delay ty. If the number of fringes per frequency interval
is counted, an estimate of the delay of the two pulses can be obtained
)\1 . )\2 2m
c-t :Nrin - ! :Nrin ) 3.4
0 fi ge)\Q_)\l 0 fi gewl_w2 ( )
where Npinge is the number of fringes in a given wavelength interval. An example of an
interference spectrum is depicted in figure 3.2.

Spectral phase determination

The key to characterize dispersion effects of the medium is the spectral phase, but only
the intensity spectrum can be measured by a spectrometer. However, the interference
spectrum can be used to retrieve the spectral phase difference Ap(w) by performing an
inverse FT on (3.3) into a pseudo time domain (without temporal phase information)

~ 1 2 t-t)? . (t+tg)?
FHUSW)() = (28_;72 T elA‘p> (3.5)
T

which is also depicted in figure 3.2. The FT describes which frequencies lead to the
course of the measured spectrum. The spectrum contains a central peak which describes
the underlying GAUSSIAN of the frequency spectrum and contains no phase information.
The shifted side peaks are symmetrical and contain the spectral phase according to (3.5).

spectrum S(w) in a.u.
inverse FT F~'[S(w)](t) in a.u.

—

|
—-15 —-10 -5

frequency w — wp in a.u. time ¢ in a.u.
Fig. 3.2: The left side shows the simulated spectrum of two interfering GAUSSIAN pulses for

different delays tg. On the right the absolute value of the Fourier transform of the
spectrum is depicted.

11



3.2 GDD determination via phase differentiation

The phase can be extracted by isolating the side peak and performing a FT (2.18)

_ 2 (t—tg)2 .
S(t) = ie_rigelAw

T

S(w) = F[S(t)](w) = exp <—W2T ) expli(Ap(w) + tow)]. (3.6)

This is most commonly done by applying a window function to the F'T, which is a rectangle
setting all values of the spectrum outside the chosen interval to zero. The phase can be
retrieved by using the general relation to acquire the phase of a complex number

= —arctan Im(5(w))
Ap(w) = t (Re(g(w))>' (3.7)

The phase Ap(w) contains the information of the second order dispersion (GDD) and
higher order dispersions (TOD, FOD), which can be extracted via phase differentiation.

3.2. GDD determination via phase differentiation

A straightforward way to determine the GDD is to differentiate the retrieved spectral
phase twice according to equation (2.26). However the method of extracting the spectral
phase is important for differentiation. The periodicity of the complex EULERIAN function
(e.g. exp(ip) = expli(p + 27n)] for every integer n) causes all values of the measured
phase to be initially between —7 and +m. This means that infinitely many different
phases correspond to the same pulse. The problem is that if the phase exceeds the value
7 it jumps back to —m, leaving a discontinuity. This problem is shown in figure 3.3.

T T T I
1 30 | 8
= <
© £ 90l i
E =
2 05 9.
§z o 10 |
I3 :
5 [
0 | |
0
| | | | | | | |
1000 1020 1040 1060 1000 1020 1040 1060
A in nm A In nm

Fig. 3.3: A simulated spectrum of two interfering pulses with a time delay of 1 ps and a relative
GDD of 10000 fs?. The right side depicts the retrieved phase Ap(w) —tow with (blue)
and without (orange) phase unwrapping.

A possible solution is the phase-unwrap-algorithm [2]. The routine decides whether to
add or subtract multiples of 27 to preserve continuity of the measured phase. It has to be
mentioned, however, that these routines only work well, if the phase difference between
two sample points is smaller than 7 2.

2Consider two neighboring sample points with phases ¢; = —7/2 and s = /2. The algorithm cannot
decide, whether to add or subtract 2.

12



3.2 GDD determination via phase differentiation

Numerical differentiation method

If the resulting spectral phase can be properly unwrapped, it can be differentiated twice
with respect to the angular frequency w. The differentiation can be implemented numer-
ically in the following way:

i) |- ) e

If the central frequency wy is used here, the group delay dispersion (GDD) of the two
pulses at A\g = 1030 nm is obtained. However, this method requires a smooth phase and
is very sensitive to noise. This will be discussed in section 4.4.3.

Fitting method

To avoid possible influences of noise in the spectral phase, which can lead to errors during
differentiation, a second approach is proposed. Thereby a high order polynomial is fitted
to the spectral phase. This analytic function can be differentiated twice to retrieve the
GDD. The measured phase is not only linearly chirped, which means that also higher order
dispersions such as TOD and FOD occur. Therefore it is advisable to choose high order
polynomial fits. The order of the fit was determined by testing different orders, checking
at which order the GDD does not change anymore. A spectral phase measurement and
the retrieved GDD is shown in figure 3.4.

1.5 I 1.5 r w
—— Phase 6000 —— 5th order
IS —— Intensity 10th order
‘m 1k 11 = ~ —— 20th order ||
g 2 & 4000 —— 40th order
= ER
z 22 2000
£ 0.5 105 = 5
5
—~
0 [ |
O | | | 0 | |
1000 1030 1060 1000 1020 1040 1060
wavelength w in nm wavelength A in nm

Fig. 3.4: Recorded measurement of the spectrum and spectral phase (without absolute phase
and group delay) of two interfering pulses with a delay ¢ty = 2 ps. The right side shows
the retrieved GDD for different orders of the polynomial fit.

It can be seen that the GDD varies a lot for different orders of polynomial fits outside the
wavelength interval from 1010—1050 nm.

To characterize optical components in general, the GDD is measured with and without
the optics inserted to eliminate the dispersion of the measurement setup including the
mirrors, free space propagation in air and, most important, the beam splitter.
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3.3 GDD determination via the cubic phase function

3.3. GDD determination via the cubic phase function

The previously discussed methods measure the group delay dispersion by taking the
second-order derivative of the measured phase with respect to angular frequency obtained
by a FT. The second derivative is prone to noise which is dependent on the different
parameters of the phase retrieval algorithms described in section 3.2 e.g. the window
width. Here, Zeng et al. developed an algorithm to determine the GDD without phase
retrieval and differentiation operation [15].

The method is based on the calculation of the cubic phase function (CPF) of the FT of
the interference term (3.6). Consider a cubic phase signal of a GAUSSIAN pulse shape,
which can be expressed in the form of equation (2.23)

B(w) = y/5(0) exp(—ip(w)) = /5@) exp|-i(gn + uw + pr + os®)] (39)
with /S (w) (22D exp (—W247-2>.

where p(w) is the spectral phase, expressed as a third order polynomial. It is assumed that

the absolute value of the spectral phase {/S(w) has a GAUSSIAN amplitude modulation.
The GDD therefore is

26) d?

GDD(w) “2” d“;(;") = 2(ipa + 3p3w). (3.10)

The cubic phase function is defined by [16]
CPF(w,T) = /E(w + W )E(w—w')exp (iTw'2) duw'. (3.11)

0
Substituting (3.9) into (3.11) yields
. x w22

CPF(w,T) = S(w)eX(#oteretea?tese?) / e(’ 2 )e*i[2<w+3W>*T1W’2 dw’ (3.12)

0

The occurring GAUSSIAN integral can be solved with the help of the known formula

[e.e]

/exp(—a :v2) der = ;\/Z (3.13)

0

Therefore the integral (3.12) results in

CPF(w,T) = S(w)e%(w)\/j{j +1[2(p2 + 3psw) — T]} E. (3.14)

It can be seen that the absolute value of CPF(w,T’) peaks along the curve T' = 2(p9 +
3psw). Comparing this result with equation (3.10) shows that the peak of the cubic phase

14



3.3 GDD determination via the cubic phase function

function runs along the GDD of the spectral phase and can be used for its estimation.
The GDD with respect to the angular frequency w can be written as

GDD(w) = argmax |CPF(w, T)|. (3.15)
T

The numerical processing starts with an inverse FT of the equidistant spectrum. A filter
is applied to extract one of the interference peaks. It is chosen such that it includes the
bandwidth and excludes the noise as well [15]. The filter is realized by a program that sets
all intensities outside the chosen bandwidth to zero. After that, a F'T is applied. The cubic
phase function can be calculated in the discrete form with the following expression [16]

N—-1

2

CPF(wn, T) = 3" E(@nim)E(wn-m) exp(—iT[m(wn 1 — wn)]?). (3.16)

m=0

Here the quantity Aw is the frequency resolution of the transformed signal. The maxi-
mization is first implemented by a coarse search from 0—5000 fs? with a resolution of 5 fs?
in order to get the upper and lower boundaries of the GDD. This is followed by a fine
search with a resolution of the order of

max(GDD) — min(GDD)
1000 7

AGDD = (3.17)

which is a resolution of 0.6 fs? for the measurement depicted in figure 3.5.
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Fig. 3.5: To illustrate the CPF, its absolute value was calculated at 23 frequency points and
normalized to the corresponding wavelength for a dispersion measurement of fused
silica of length L = 60mm. It should be noted that the curvature of the CPF is
shown more intensively in order to make the maximum clearer. The dispersion curve
calculated from the maximization of the CPF is shown in blue.

However, it should be noted that a third order phase term with a linear chirp was used
to calculate the CPF as shown in equation (3.9). This means that only constant TOD
can be determined with this method. Another method for calculating higher order phase
terms is proposed in [17].
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Study of the spectral phase

4. Study of the spectral phase

The method of spectral interferometry (SI) will now be used to analyze different materials
with known dispersion like fused silica and an Yttrium aluminium garnet (YAG) crys-
tal. The previously introduced methods will be compared with each other and occuring
experimental difficulties will be discussed. The comparison to the theoretical dispersion
will lead to an estimation for which wavelength ranges the measurement can be trusted
and what deviations of the resulting GDD values are acceptable.

4.1. Experimental setup

The system used for the measurements is a mode coupled femtosecond oscillator named
Flint FL1 with a repetition rate of f = (75.9 £ 0.5) MHz which creates ultra short laser
pulses of length 7 ~ 50fs at a centre wavelength of \y = (1035 & 2) nm. The oscillator
generates linear, horizontally polarized laser pulses [18].

For the spectral phase measurement via SI, a MICHELSON interferometer is utilized.
Due to the use of two mirrors and only a beam splitter, the setup is very compact and
offers the possibility to vary the delay. The setup is depicted in figure 4.1. A Mach-
Zehnder interferometer was also discussed, but it proved to be impractical because here,
the delay could not be adjusted without changing the beam path. Primarily a thin beam
splitter (d = 3mm) was used for the MICHELSON interferometer. This, however, had the
disadvantage that the reflexes of the front and back side of the glass could not be spatially
separated. Both reflexes show a time delay and can enter the entrance of the spectrometer,
which leads to an additional interference pattern, making the evaluation more difficult.
Finally a thick coated glass (d = 9.75 mm), which is reflective ((50 & 5) %) for an incident
angle of 45° at 1010—1055nm, was used as a beam splitter and spatially separated both
reflexes. The fringes are detected by a spectrometer Ocean Optics HR2000+ with a
resolution of A = 0.14nm (FWHM) at Ay = 1030 nm.

™ reference

Faraday Glan-laser
rotator polarizer

|- -
—

spectrometer

Fig. 4.1: Experimental setup: A MICHELSON interferometer is used to create a second pulse,
which interferes with the first pulse leading to fringes in the spectral domain due to
the delay between the two pulses.
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4.2 The measurement procedure

A thin film polarizer (TFP) was placed in front of the MICHELSON-interferometer, which is
only transmissive for p-polarized (German: “parallel”) light and reflective for s-polarized
(German: “senkrecht” which means perpendicular) light. The Faraday rotator is used
to ensure that the laser light returning to the input cannot return to the oscillator if
the interferometer is adjusted accurately. The FARADAY rotator is based on the FARA-
DAY effect, which describes the rotation of polarization in a medium in the presence of a
magnetic field [12]. The direction of rotation depends on the orientation of the magnetic
field to the direction of laser propagation. The rotator is designed in such a way that
polarization direction is rotated by 45° when the laser passes through it once. If the prop-
agation direction reverses, the polarization is rotated again by the same angle. Initially
p-polarized light becomes s-polarized and vice versa.

4.2. The measurement procedure

The acquisition of the spectrum was done in LabVIEW. For that purpose a program
was designed for spectral phase measurement and GDD estimation. It is described in
detail in appendix C. The program shows the spectrum, calculates the spectral phase
and determines the pulse delay ¢, and the GDD in a wavelength range of 1010—1050 nm.
At first the spectrum of the two noninterfering pulses is recorded for comparison. This
is depicted in figure 4.2. When the delay of the reference is adjusted that both pulses
are superimposed in space and time, they can be analyzed with spectral interferometry.
Most of the measurements are conducted at a delay ty ~ 2 ps £ 600 pm. The reason for
that will be discussed in section 4.4. The performed fast Fourier transform (FFT) is also
displayed in figure 4.2.

—— no interference ’— no interference ‘
1 . 10% | y
. .
£ 051 fes---- 1z ol |
g E
k= Y
R g
e o —tttea)
% ——delay tg = 2ps ra ——delay tg = 2ps
o 1 1o 102 H
= <
0.5 n 100 | |
0 | N | Man
970 1000 1030 1060 1090 -2 -1 0 1 2
wavelength A in nm delay tg in ps

Fig. 4.2: Spectra of two pulses with a large delay without spectral fringes and with a delay
of tg = 2ps. For the reference the FWHM was measured. The right side shows the
Fourier spectrum in the pseudo time domain according to equation (3.5).
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4.3 Measurement referencing with fused silica and YAG crystal

The delay ty can be directly extracted as the difference of position of the middle peak
and the shifted peaks. In figure 4.2 the magnitude of the FF'T is assigned to the delay t,
which is done by determining the time resolution of the FFT. It is given by

f sample 1 2
Ot = 208 —  — — 4.1

N Av  Aw (4.1)
The expression feample denotes the sample rate and is the ratio of the number of samples
N per frequency interval feumple = N/Av. The quantity Aw describes the whole frequency
range of the spectrometer Aw = Wpax — Wmin- The time resolution ¢ describes the time
step between two frequency values in the pseudo time domain. Therefore the time between
two FFT values can be calculated as

2 27

=T — 23.39fs. 4.2
Aw (19737 — 1.70517) - 10 Hz i (4.2)

ot

It is only used to calculate the corresponding delay ty,. The shape of the shifted peak
gives no information about the actual shape of the pulse due to the lack of any phase
information in the pseudo time domain.

The delay can also be estimated by using equation (3.4). 34 fringes can be counted between
A1 = 1000nm and Ay = 1060 nm in figure 4.2 (left), which yields a delay t, = 2.004 ps.
This value agrees well with figure 4.2 (right).

4.3. Measurement referencing with fused silica and YAG crystal

In order to assess the method of GDD determination, a measurement for a cylindrical glass
of fused silica with length Lgio, = 30mm and a YAG crystal with Lyag = 20 mm was
performed. The GDD was estimated by the phase differentiation method and via the CPF.
The retrieved phases of the reference spectra (without the measurement specimen) were
subtracted from the measurement spectrum before differentiating. For the CPF method
the GDD for both spectra were calculated and subtracted. Dividing the GDD by the
whole propagation length 2L yields the GVD according to equation (2.30). Both results
were compared to the theoretical curves, which were calculated using the SELLMEIER
equation for fused silica (A.1) and YAG crystal (A.3) given in appendix A. The results
are shown in figure 4.3.

The GVD obtained by the CPF method corresponds very well to the theoretical curves
in the range of 1020—1050 nm, but outside this range occur large deviations. However,
the fit method yields different results for various orders of the polynomial fit. The graph
displayed in figure 4.3 shows the order with the best result for the GVD, but it can be seen
that the retrieved GVD does not show the same qualitative behaviour as the theoretical
curve which is nearly linear on the whole wavelength range. From the measured values
it is concluded that the GDD determination of the CPF method gives correct results
with an error of £1.5%. However, the absolute error is at least of the order of 20 fs?.
This value was estimated by comparing the GDD difference of several retrieved reference
measurements that were recorded on different days with the same setup and calculate the
deviation from zero.
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4.4 Experimental issues
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Fig. 4.3: Measurement of the GDD of a fused silica and YAG crystal with lengths Lsio, =
30mm and Lyag = 20mm for the phase differentiation and CPF method. The
intensity measurement is shown on the left, the reference measurement can be seen
in figure 4.2. The depicted phase is the phase difference without the absolute phase
and group delay. The shaded area represents a +£1.5% deviation from the measured
value. It can be seen that in this area the measured values agree with the theory. The

theoretical value at \g = 1030 nm is indicated with a dotted line.

Despite the superiority of the measurement accuracy of the CPF method, phase differ-
entiation offers some advantages. GDD measurements can be performed instantaneous
and components can be characterized directly in LabVIEW, while the calculation of the
CPF for a single measurement takes several minutes depending on the desired resolution.
As figure 4.3 shows, the deviation from the theory is much greater here, so that the val-
ues can only serve as a first estimate of the GDD. As demonstrated, only values within
1020—1050 nm are valid, so from now on only this interval is shown.

4.4. Experimental issues

The influences of optical media on the shape and spectral distribution of different fre-
quencies is characterized by the GDD, which can be retrieved by SI using the previously
described methods of phase differentiation and CPF. However, the determination of the
GDD as second derivative of the spectral phase makes some metrological demands on
the retrieval algorithm. The accurate determination of the phase is especially important,
because small errors can have a strong effect on the second derivative and falsify the
result.
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4.4 Experimental issues

4.4.1. Spectral calibration

In order to ensure a good measurement, the first step is to calibrate the spectrometer or
at least check the calibration. This was done as follows:

A calibration measurement was carried out, measuring the emission lines of vapor dis-
charge lamps of different gases. The gases have several well characterized emission lines,
which can be used for the calibration of spectrometers. Figure 4.4 shows the measured
wavelength of the emission in the wavelength range between 960 nm and 1100 nm.
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Fig. 4.4: Spectral lines of several elements measured with the high-resolution spectrometer
Ocean Optics HR2000+.

The identified spectral lines of the elements were used to examine the spectral calibration
of the Ocean Optics HR2000+. They were compared to the theoretical values of the
emission, which is presented on table 4.1. It can be seen that the magnitude of the error
of the calibration is of the order of 0.2 nm.

Table 4.1: Comparison of the measured spectral lines to the data sheet of the calibration lamps.
Since the spectrometer also registers higher orders of the spectral lines, the order is
also mentioned.

A measured [nm] A [nm] order element

965.63 965.80 1 Argon
975.04 975.20 1 Krypton
978.34 976.00 2 Argon
979.85 980.00 1 Xenon
992.21 992.30 1 Xenon
1013.90 1014.00 1 Mercury
1080.00 1079.80 1 Neon
1092.06 1092.14 2 Mercury
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4.4 Experimental issues

In order to assess whether the measured error of the calibration has an effect on the
GDD measurement, the following consideration is made according to [19]. It is assumed
that the spectrometer is imperfectly calibrated and that the difference of the measured
frequency w,, = 2mc/\,, and the frequency w of the photons can be characterized by an
error function: w = wy, + e(wy,). According to equation (3.2) the spectrum for the phase
retrieval can be written as

S(w) = 25(w)[1 + cos(Ap(wm + e(wm)) + (wm + e(wm))to)]- (4.3)

The spectral phase difference at the photon frequency w that can be retrieved is composed
of two terms.

1. The first term Ap(w,, + e(wy,)) is the spectral phase difference at the shifted fre-
quency w,, + e(w,,) and is mistaken for the spectral phase difference at w,,. This
error is not caused by spectral interferometry and arises in many methods, which
are based on spectral intensity measurements. It cannot be bypassed and should
therefore be kept as small as possible [19)].

2. The second term (w,, + e(wm,))to is a quantity which is proportional to the delay
to. After the measured reference phase without a dispersive material is subtracted,
e(wp) leads to a delay dependent error [19]. Even a small calibration error can have
an important effect on the retrieval of the spectral phase because it is multiplied by
the delay tg.

The paper of Dorrer [19] states that for a delay ¢y ~ 1ps and a calibration error 0\ =
0.1nm (at 800 nm), the error in the phase retrieval is 0.1rad. An easy way to correct this
error is to use a reference phase. For the dispersion measurements with the MICHELSON
interferometer a reference phase has to be measured anyway. Subtracting the reference
phase recorded at the same delay ty removes the spectral phase introduced by the setup,
most importantly the dispersion of the beam splitter itself. It is important to keep the
delay constant in order to eliminate the parasitic effects of the imperfect calibration.

There are also other possible sources of spectral errors, such as the response of the spec-
trometer [19] or spatial problems, such as noncollinearity of the two interfering beams
due to poor adjustment of the interferometer setup or angular chirp of the beams, which
influences will be discussed in section 4.4.6.

4.4.2. Spectral resolution

The evaluation of the spectrum is based on the characterization of the spectral fringes.
In order for this to work without errors, it must be ensured that the resolution of the
spectrometer is high enough. For a grating spectrometer, the spectral resolution d\/\ =
m - N is the product of the diffraction order m and the number of grating lines N. The
density of fringes in a given wavelength interval is dependent on the delay ¢y between the
laser pulses. This section explains which delay ¢y is best suited for measuring the spectral
fringes.

It is important that the correlation peak is spatially separated from the main peak, which
is shown in figure 4.5.
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Fig. 4.5: Comparison of the density of fringes for different pulse delays to. For delays tg < 0.6 ps
the shifted peak in the fourier spectrum merges with the central peak, which leads to
errors in the phase retrieval algorithm. However, the delay must not be set too large,
because then the fringes cannot be spectrally resolved anymore.

Hence the delay cannot be arbitrarily small. For this purpose an estimation of the mini-
mum delay is needed, which can be used for an error-free measurement. Figure 4.5 shows
exemplarily that for ¢y > 0.6 ps the main and side peak in the Fourier domain can still
be separated. On the other hand, larger delays lead to smaller fringe distances. In this
case it must be ensured that the Fringes are spectrally sampled correctly according to
the sampling theorem. Too small fringe distances also lead to a faulty measurement.
It is therefore necessary to determine a delay measuring range that allows an error-free
measurement of the spectral phase.

Figure 4.6 shows a measurement of the GDD difference vs. delay of two pulses for the
entire possible spectral range of the spectrometer. It is expected that the GDD is not
dependent on the delay, therefore all values should be in a range around a constant value.
Figure 4.6 shows the doubled standard deviation of the values between 0.6—6 ps. For
delays ty < 0.6ps and ty > 6ps most values are outside the standard deviation. The
lower limit can be explained by the merging of the two peaks in the Fourier domain.

Additionally, a theoretical limit of the resolving power is sought. According to the
NYQUIST-SHANNON sampling theorem the frequency of the fringes in the spectrum has
to be smaller than two times the sampling rate. Therefore the length of one fringe period
0 Aringe has to be larger than two times the resolution of the spectrometer 6\ = 0.14nm.
According to equation (3.4) the maximum possible delay at A\g = 1030 nm is

5)\fringe > 25/\
< M

(3.4)
= 20\

cto — 3790 pm £ 12.64 ps. (4.4)
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50 .

J 1L Il i Il
oy I |||| |||||||II|I || I|I ||| l i ||
| ke [y Lol
’ III I'I||III |||| |||||IrI II|||||||II ||||||.|||||.|II,| i |I|||||||||||II i "||||I||||' dh I||'|'I| ||||i! III::'|II|I|-||- ,.|| ||||| ||. !||||| ||

ool
II-|| II
: | | || I|| ||.
—50 |
; £ 0.6 ps

05 1 15 2 25 3 35 4 45 5 55 6 65 T 75
delay tg in ps

GDD in fs?

Fig. 4.6: GDD difference measurement of two pulses as a function of the delay at Ay = 1030 nm.
Each value is averaged over 50 individual measurements. The mean GDD = 404 fs? of
the values between 0.6—6 ps was subtracted from the measurement, the blue shaded
area representing two times the standard deviation. The error bars represent the
standard deviation of the measurements.

This value is twice as large as estimated in figure 4.6,
which shows that the measurement is already influenced
well before the sampling theorem is violated. For the
used spectrometer, measurements must always be per-
formed with delays in the range of 0.6—6 ps.

The mean value GDD of the measurement in figure 4.6
can be estimated by dispersion added by the beam split-
ter in the interferometer. For an incident angle of
Y1 = (45 £ 5)° the dispersion can be calculated using the
adjacent figure 4.7. The second beam travels an extra Fig. 4.7: Beam path in the
distance L through the glass of the beam splitter. This beam splitter.

causes a dispersion proportional to L. Using SNELL’s law

with n,; =~ 1 the refraction angle is

sin?y = nsinty = ¥ = arcsin ( (4.5)

1
With the thickness d = 9.75mm and the refractive index of fused silica n = 1.45 at
A = 1030 nm the length L can be calculated to

2d (. 2d
L= = = (22.3 £ 1.8) mm. (4.6)
cos Vs 1_
(z)

This can be used to determine the GDD via equation (2.30). With the group velocity
dispersion of fused silica GVD = 18.97 % the GDD is (423 + 34) fs* which compares well
with the value subtracted in figure 4.6.
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4.4 Experimental issues

4.4.3. Noise sensitivity

Even for a well calibrated spectrometer, errors occur during measurements due to the
inevitable noise of the spectrometer. The signal to noise ratio (SNR) plays an important
role in GDD determination. Therefore, the method for which the measured GDD depends
least on the noise level is searched. Achieving the highest possible SNR can be difficult
because the signal at the central frequency must not saturate the spectrometer. The
noise sensitivity depends on the used phase retrieval algorithm. A comparison between
the numerical method and fitting method of the phase differentiation algorithm compares
the GDD for different window widths in the Fourier domain. This is shown in figure 4.8.
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Fig. 4.8: Sensitivity of the retrieved GDD on the window width for different phase differentia-
tion methods for the recorded spectrum in figure 4.2. For a large window width the
noise affects the numerical retrieval algorithm and leads to large oscillations, while
the fitting method is less susceptible to noise.

Figure 4.8 shows that the numerical method depends strongly on the chosen window width
and therefore on the noise level. It is concluded that the method of fitting is preferable
to numerical differentiation for the purpose of an online GDD estimation.

The CPF method which was proposed in section 3.3 is the least susceptible to noise
because it requires no second order differentiation algorithm and can calculate the GDD
directly from the F'T of the pseudo time domain. For weak signals with a high noise level
the CPF method is the best choice.

24



4.4 Experimental issues

4.4.4. Frequency sampling

One of the key aspects of SI is the Fourier transform (FT). It is done numerically via
a discrecte Fourier transform algorithm, commonly known as the FFT. However, this
algorithm requires evenly spaced samples in the frequency domain.

The spatial coordinates z of the detector plane are equally distant and nearly proportional
to the wavelength A in most spectrometers [20]. This results in a nonlinear dependence
of the angular frequency w to the wavelength array stored by the spectrometer. Because
w ~ A1 the frequency steps w,1 — w, vary as much as £37 % from the mean step size
dw for the spectrometer Ocean Optics HR2000+. The maximum deviation occurs at the
beginning and end of the sampling interval.

Figure 4.9 (left) shows the result of a FFT with unequal numerical sampling for different
delays to marked by different colours. The corresponding spectra are depicted on the top
of figure 4.9. The obtained array is a function of the spatial frequency k that corresponds
to the FT of the spectrum S(z) as a function of the spatial coordinate [20].
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Fig. 4.9: The top row shows the spectrum S(w) of a reference measurement (empty interfer-
ometer) for three different delays t9. The bottom left side shows the magnitude of
the FFT of the spectra on the top, the colours are referring to the different delays
to. The bottom right side shows the same experimental data, except that a linear
interpolation of the angular frequency w has been performed to produce an array of
evenly spaced data points.

Figure 4.9 (bottom left) shows that the correlation peak is not just simply translated in
time as would be expected by (2.25), but also broadens when ¢, increases. This effect was
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4.4 Experimental issues

explained by Dorrer et al. in [20].

The huge impact on the calculation of the spectral phase and thus the group delay dis-
persion can be shown by the derivation of the spectral phase and GDD for the spectrum
of figure 4.9 with a time delay of t; = 2ps. The resulting GDD for two differentiation
methods is depicted in figure 4.10. It shows that numerical methods fail completely in
the analysis of non-interpolated spectra. A numerical evaluation of the phase obtained in
figure 4.10 yields values for the GDD which oscillate between 440 000 fs?. The oscillations
are caused by the variations of the frequency steps and therefore its derivative, which is
used in the numerical calculation (3.8).

3000 = 3000 + numerical method [
— fitting method
& 2000 | & 2000
= =
8 8 1000
3 1000 ST
numerical method
0 | | — fitting method 0
I L] I | | |
1020 1030 1040 1020 1030 1040
wavelength A in nm wavelength A in nm

Fig. 4.10: The left side shows the retrieved GDD difference of two pulses for two different differ-
entiation methods without interpolation of equidistant frequency points. The values
of the numerical method were decreased by a factor of 20 for a better visualization.
It can be seen that the GDD determination is not possible and the retrieval algo-
rithm fails for numerical differentiation. The right side shows the GDD difference
with interpolated data points.

One approach to solve the discrepancy discussed above is to use an algorithm that can
handle nonevenly spaced data arrays. However, LabVIEW offered no function to tackle
the problem this way. A straightforward solution is to first interpolate the experimen-
tal data to generate an array of evenly spaced frequencies. This was done directly in
LabVIEW at the data aquisition. The change of the Fourier transform can be seen in fig-
ure 4.9 (bottom right). It was already demonstrated in figure 4.10 that the interpolation
has a huge impact on the quality of any phase differentiation algorithm. The CPF func-
tion method proposed in section 3.3 also requires evenly spaced frequency points for its
calculations. Therefore the interpolation was done for all measurements in this thesis.

4.4.5. Change to frequency domain
The spectrum can be written in terms of the wavelength S\(\) or frequency S,,(w). The

transformation between both domains is essential because the theoretical work to obtain
the spectral phase involves FTs and thus frequencies, while spectrometers record the
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wavelength. Using w = 27¢/ ) the transform of the phase is

a0 =g (55 (@.7)

For the transformation from wavelength to frequency, the law of conservation of energy
must be taken into account during integration. Therefore the infinitesimal dw must be
transformed as well so that the spectral energy remains the same in both domains [2]

[ - [ - [ - 2me\ 2me
/Sw(w) o = /SA(A) )= /SA(W)Wde. (4.8)
The variable A\ was transformed to angular frequency w and the infinitesimal can be
expressed as d\ = —2mc/w? dw. This results in
~ ~ [(2mc\ 2mc
Sw - S)\ (w> wz . (49)

This correction only has a marginal effect on the intensity S(w), since the measured
spectrum is in a narrow wavelength range of FWHM = 35 nm according to figure 4.2. In
a wavelength range of 1020—1050 nm the deviation of the intensity at the edges is about
+3.5%.

4.4.6. Angular chirp and pulse front tilt

Up to now it has always been assumed that dispersive or diffractive effects could be treated
separately. However, different optics cause a coupling between the spatial and temporal
components of the electric field. This effect is utilized when stretching and compressing
ultrashort pulses using prisms or gratings. The most common distortion of the pulse is
the angular dispersion (AD), which is responsible that different wavelengths of the beam
propagate in different directions. AD is useful because it offers the possibility of applying
a negative GDD to the pulse and compressing it. However, AD also leads to another
spatio-temporal distortion, the pulse front tilt (PFT). It is illustrated in figure 4.11.

angular dispersion

undistorted‘...*" and pulse front tilt

pulse \

Fig. 4.11: Pulse front tilt caused by the angular dispersion of the prism [21].

The PFT and AD are characterized by the parameters

c_dn o dh

= = 4.10
0 p=t (110
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4.4 Experimental issues

where x is the center position of the w-component of the beam and 6, its propagation
angle. For a (GAUSSIAN spectrum with a linear chirp the evolved values of the parameters
for the propagation along the z-axis are given by [21]
d? d?

LA R (4.11)

dw?  dw?|
z2=0

C(Z) = CO + /627 V)
((z) describes the increased spatial dispersion due to angular dispersion, which means
that different colours in the pulse become separated from each other. ¢”(z) describes the
introduction of negative GDD due to AD, which is the basis of all pulse compressors. The
effects of AD are shown in the following.

Consider a prism with an apex angle v. The deviation angle § for a given incident angle
@1 is derived in appendix D and given by

0 = ¢ — v + arcsin [sin y\/n? — sin? ¢, — sin ¢, cos 7]. (4.12)

The new propagation angle is therefore ¢; + 6. The
angular dispersion of the prism can be written as

_d(p1+6)s  do
b= dw Cdw
The second summand of ¢”(z) in (4.11) can be in-
terpreted as GDD, which is additionally imprinted on
the spectral phase of the pulse after the prism during
propagation by the length z. Figure 4.13 shows the
GVD for different prisms and incident angles.

(4.13)

Fig. 4.12: Deflection angle § of a
prism.

1 I
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apex angle «v in degrees

Fig. 4.13: The GVD = k32 for different prism with apex angle . For a typical prism v = 60°
2
the GVD for ¢ = 45° is 0.64 %

It turns out that the effect of AD is very small. The quantity z can be identified with
the delay ¢ - ¢ in the method of SI. For normal delays (see section 4.4.2) ¢ -ty ~ 0.6 mm
the deviation of the GDD is of the order of 0.3 fs?, which is below the resolution of the
measurement method. However, if a larger optical setup is examined by SI, where the next
pulse of the oscillator is used as reference, the parameter becomes z = ¢/ foscinator =~ 3.95 m
and the influence of AD is no longer negligible.
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5. Characterization of a laser amplifier

The developed methods for determining the GDD of an optical component shall now be
used to characterize all components of a regenerative laser amplifier. For this purpose,
each optical component is characterized individually using the method of SI and its effects
on the GDD of the pulse are described.

5.1. Setup of the laser amplifier

The structure of the amplifier is explained in the following. The setup is shown in fig-
ure o.1.

diode stack V
=
==
M1 [
O Yh:FP-glass
M3
A/2
5m \

M2

45°

TFP 2

Fig. 5.1: Setup of the laser amplifier. The laser beam is inserted into the amplifier on the right
side. The resonator consist of a concave end mirror M2 with R = 5m and a planar
mirror M1 near the pump medium which is Ytterbium doped fluoride phosphate
(Yb:FP) glass. The pulse is decoupled from the amplifier by a POCKELS cell and a
TFP. The spectral mirror M3 compensates for the unequal wavelength amplification
of the active medium.

The incoming pulse is coupled into the amplifier via TFP1. The amplifier shown in
figure 5.1 is designed as a regenerative ring-like cavity, where the laser pulse circulates up
to 40 times during the amplification. The input and output coupling is realized by the
PocCKELS cell. A \/2 plate is used to compensate the polarization rotation induced by
the POCKELS cell. The Ytterbium doped fluoride phosphate glass is pumped through the
mirror M1, which is transmissive for the wavelength of the laser diode stack. After the
amplification the pulse is decoupled at TFP2 [22].
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5.2 Characterization of the optical components

5.2. Characterization of the optical components

For a complete description of the laser amplifier the optical components are individually
characterized. As already shown in section 4, the CPF method provides the most accurate
results in determining the GDD with an accuracy of +1.5% within the spectral range of
1020—1050 nm. The following components are therefore analyzed with this method. For
the measurement, the spectral phase is recorded using SI and compared to a reference
spectrum. The relative phase is displayed, whereby the absolute phase value ¢y and the
group delay 7(w) = ¢'(wo)(w — wp) are subtracted since they have no physical significance
(see section 2.4). In the measurement of several components, the pulse passes the optical
component twice. For these cases, the values obtained were halved in order to characterize
all components for a single resonator cycle.

Short pass filter (pump mirror)

The first component to characterize is a short pass filter M1 of figure 5.1, which is trans-
missive for the light of the diode stack and reflective for the pulse in the amplifier. Three
possible filters, which can be used as pump mirrors M1 in the amplifier, with different
transmission ranges were measured. The measurement was performed by exchanging one
mirror of the MICHELSON-interferometer with a short pass filter and comparing the GDD
to the measurement of a silver mirror.

e
[
T
|

Phase in rad

0 | | B
: — HR (1010—1070)nm; HT (930—955)nm
1000 g HR (1030—1040)nm; AR (930—955)nm | |

% : — HR (1030—1200)nm; AR (800—1000)nm
k= — Reference; GDD(1030 nm) = 300 fs?
=) . A5 £a2
a 500 1415 fs
o :
S~
ol 16085 | ~
1020 1030 1040 1050

wavelength A in nm

Fig. 5.2: Phase (top) and GDD measurement (bottom) of three different short pass filters
which are high reflective (HR), high transmissive (HT) or anti reflective (AR) in
certain wavelength ranges. The reference refers to a digitized GDD calculation of the
manufacturer Layertech GmbH of the second short pass filter (orange). Errors can
also occur in the reference because it was theoretically calculated by the manufacturer.

It can be seen in figure 5.2 that the reference curve deviates from the measurement of
the second short pass filter (orange) by about 10 %, but the qualitative behaviour is the
same. This can be due to errors in the digitization process or calculation errors of the
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5.2 Characterization of the optical components

reference itself. It can be seen that the GDD is nearly constant for larger wavelengths,
where the filters are highly reflective. However, for wavelengths smaller than 1030 nm the
GDD increases to large values.

Laser and 45° mirror, active medium and Pockels cell

The next component to characterize is the end mirror of the resonator with a radius of
curvature R = 5m. It is highly reflective for an incident angle of 0° in a wavelength
range between 1030—1084 nm. The other components are the Yb:FP glass, which is the
active medium, a deflection mirror which is highly reflective at an incident angle of 45°
in a wavelength range between 970—1070 nm and the POCKELS cell. The spectral phase
difference and the GDD of all four components are compared in figure 5.3. The mirrors
were measured in reflection, while the POCKELS cell and Yb:FP glass were analyzed by
inserting them into the beam path of the interferometer. The values (except for the end
mirror) were halved as mentioned before.

0.2 .
= — laser mirror
; R=-5m
= 01 45° mirror
% — Yb:FP glass
i 0 — POCKE.LS C.ell
; } p-polarization
: —— POCKELS cell
750 a s-polarization
= ;
A ,
= 500 L 117 fs? | 427 fs? .
8 250 fs? Y
B 333 1fs* : |
& v
P —3fs?
0 — |
i |
1020 1030 1040 1050

wavelength A in nm

Fig. 5.3: Phase difference (top) and GDD measurement (bottom) of a curved laser mirror
with R = 5m, a 45° deflection mirror, the Yb:FP glass and the POCKELS cell in
p-polarization and s-polarization.

Figure 5.3 shows that the laser mirror and the 45° deflection mirror imprint hardly any
significant GDD onto the pulse. Their values for the GDD at A\ = 1030 nm are within
the error tolerance range for a constant GDD of 0fs?. However, the Yb:FP glass imprints
a GDD of 333fs? with no significant change along the wavelength range. The POCKELS
cell adds a GDD of about 420fs to the pulse regardless of the polarization. This value
has to be compared to the theoretical dispersion of the crystal in the POCKELS cell,
potassium dideuterium phosphate (KD*P) [23], which has a GVD at 1030 nm of 14.63 %
(see appendix A). For a crystal length of 2cm, the corresponding GDD is 293 fs®. This
is lower than the measured dispersion, because the hygroscopic material is additionally
covered by two windows of fused silica.
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5.2 Characterization of the optical components

TFP, spectral mirror and half wave plate

The last components to analyze are the two  —
TFPs of the amplifier setup and additionally a
spectral mirror with a GAUSSIAN reflexion pro-
file for s-polarized light. The characteristics of
the TFP and spectral mirror were measured for
p-polarized and s-polarized light. The TFP is
transmissive for p-polarized light and reflective 4
for s-polarized light at an incident angle of 65°.
Therefore, the measurement setup was slightly Spectrometer E

altered as depicted in figure 5.4. The spectral

mirror was measured in transmission at an angle Fig. 5.4: Setup for the GDD mea-

of 45°. The measurement of the spectral phase surement of the TFP (s-
difference and GDD is shown in figure 5.5. polarization).
0.2

"% —TFP

= p-polarization
.E 0. 1 [ —| —_— TFP

2 s-polarization

f 0 =| |— spectral mirror

; 1 p-polarization
: spectral mirror
750 |- . s-polarization

: — A\/2-plate

500 | .

250

GDD in fs?

I |
1020 1030 1040 1050
wavelength A in nm

Fig. 5.5: GDD measurement of a TFP, spectral mirror FP15 with a Gaussian reflexion profile
in p-polarization and s-polarization and a A/2-half wave plate.

It turns out that the influence of the TFP in the case of reflexion (s-polarization) is very
small, the same applies to the transmission of the A/2 half wave plate. In the case of
transmission of the TFP, a larger GDD is observed. This may be explained by the pulse
travelling through the material of the TFP with a thickness d = 8 mm. The result is
compared with a plate of fused silica of the same thickness d = 8 mm and an incident
angle of 65°. Modifying equation (4.6), this results in a value of 194 fs?, which is similar to
the effect of the TFP. It is therefore assumed that the dispersive effect of TFP is mainly
caused by the material and not by the polarizing layer. The influence of the spectral mirror
for s-polarized light is smaller, but can be distinguished from the reference measurement
with p-polarized light.
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5.2 Characterization of the optical components

Phase dispersion after a whole resonator cycle

To characterize the entire resonator of the amplifier, the spectral phase and the GDD of
the individual components of the amplifier are summed up. According to figure 5.1 the
optical components interacting with the beam in one resonator cycle are two TFPs, a half
wave plate, the POCKELS cell, the end mirror, the pump mirror (second short pass filter)
and the active medium (Yb:FP-glass) twice. The summation for GDD and spectral phase
is shown in figure 5.6.

0.8
g —— All components
= 0.6 - HR 1030-1040 nm
B 04l --- All components
2 09l HR 1010-1070 nm
< e without pump
A 0 mirror
—— end mirror, de-
1000 flection mirror,
N Yh:FP glass
N
k=
A 500 PoCKELS cell, TFP, \/2-plate, spectral mirror
)
©)
Yb:FP glass, end mirror, deflection mirror
0 [ -
| |
1020 1030 1040 1050

wavelength A in nm

Fig. 5.6: Summation of the spectral phase difference (top) and GDD (bottom) of all components
(with pump mirror HR 1030-1040 nm) of the laser amplifier for a single cycle. The
dashed line indicates the summation with another pump mirror with a larger reflection
window. The individual shares to the total value (black) are indicated by the shaded
areas. It can be seen that the major influences on the GDD of the pulse are the pump
mirror and the POCKELS cell.

Most of the dispersion during a cycle in the resonator is caused by the short pass filter
and the POCKELS cell. The green shaded area shown in figure 5.6 is mainly caused by
the Yb:FP glass. The total group velocity dispersion is (1000 & 150) fs? averaged over the
whole wavelength range. At 1030 nm the value is 1080 fs2.

The retrieved averaged GDD can be used to estimate the length of a 50 fs pulse after one
cycle in the amplifier. According to equation (2.31), the pulse length can be calculated
to

T:To\l1+ (2(}2’]3> = 64 fs, (5.1)

)

which is an increase of 28 %.
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5.2 Characterization of the optical components

Phase dispersion after the amplification

During the amplification the laser pulse circulates up to 40 times. The whole dispersion
of the amplifier can be determined by adding the effects of 40 resonator cycles to the
dispersion effects of the TFP on p-polarized light during input and output coupling. The
spectral phase and GDD are presented in figure 5.7.

w
o
T
|

— All components
HR 1030-1040 nm

--- All components
HR 1010-1070 nm
without pump
mirror

—— end mirror, de-

[\]
[an)

Phase in rad
—_
(@)

o

4.10% flection mirror,
N Yb:FP glass
&
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A 2.104F PockeLs cell, TFP, \/2-plate, spectral mirror |
A
@)
Yb:FP glass, end mirror, deflection mirror
0 [ |
| |
1020 1030 1040 1050

wavelength A in nm

Fig. 5.7: Summation of the spectral phase difference (top) and GDD (bottom) of all com-
ponents (with pump mirror HR 1030-1040 nm) of the laser amplifier for the whole
amplification (40 resonator cycles, input and output coupling). The dashed line indi-
cates the summation with another pump mirror with a larger reflection window. The
individual shares to the total value (black) are indicated by the shaded areas.

It turns out that the additional dispersion caused by the coupling and decoupling of the
pulse is negligible compared to the total dispersion. Compared to figure 5.6, the qualitative
course of the GDD does not change. It results in an averaged value of 40 000 fs? over the
whole wavelength range. For the whole amplification process the stretching of a 50 fs pulse
can be calculated as well. Analogous to equation (5.1) the pulse length can be calculated
to 7 = 1.6 ps.
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6. Conclusion

Spectral interferometry (SI) is a promising method to characterize the dispersion of a
medium and its effects on a laser pulse. It is a reliable technique for measuring the spectral
phase, which is important for analyzing effects such as stretching of the pulse duration
and changes of the temporal shape. This Bachelor thesis dealt with a detailed derivation
and introduction of SI. It was presented how the phase difference of two pulses can be
derived by using Fourier transform (FT) and which assumptions have to be made. For the
evaluation of the spectral phase and the determination of the second derivative, the group
delay dispersion (GDD), different procedures were introduced and compared. In the first
method the measured spectral phase is directly differentiated twice with respect to the
angular frequency. This was done either numerically or by taking the second derivative
of a high order polynomial fit of the retrieved spectral phase. Since this method is very
susceptible to small disturbances of the spectral phase, a second method was searched for,
in order to obtain the GDD directly. For this purpose the cubic phase function (CPF)
was introduced, the maximum of which can be used to determine the GDD. It turned out
that the method of the CPF gives more accurate results. Measurements of fused silica
and YAG crystal showed that the retrieved GDD describes the theoretical values with
a deviation of £1.5% in a wavelength range of 1020—1050 nm. The small wavelength
range results from the fact that the CPF method requires a high SNR of the spectrum
to work properly. The algorithm for calculation and maximization of the CPF is time
consuming. Depending on the desired resolution, the algorithm takes several minutes for
an evaluation of a single measurement. The differentiation method, however, offers the
advantage that the data evaluation can be performed instantaneous at the time of data
acquisition, which is advantagous for quick GDD measurements. For the measurement
of the spectral phase a LabVIEW application was developed, which automatically reads
the data of the spectrum and calculates the spectral phase and all phase orders with the
phase differentiation method up to the third order dispersion (TOD).

When measuring the spectral phase, possible sources of errors must be excluded. This
means that the spectrometer should be calibrated as accurately as possible. Since the
calibration errors depend on the delay ¢35 between the pulses, they can be minimized by
recording the measurement for a certain optical element and the reference at the same
delay of both pulses. Furthermore, the delay should be selected to match the resolution
of the spectrometer. For the measurement with the spectrometer used in this thesis, a
possible measurement range for ty =0.6—6ps was found. For values below the range,
errors are caused by the merging of the main peak with the side peak in the Fourier
domain, whereas values above the determined range violate the sampling theorem for the
resolution of the spectral fringes. For the inverse F'T of the pseudo time domain back into
the frequency domain a suitable window should always be selected. This window should
contain the complete shifted peak and additionally exclude the main peak and as much
noise as possible. Furthermore, when using a FFT, it is important to use an equidistantly
sampled spectrum in the frequency domain, which can be achieved by interpolating the
spectrum. For both the phase differentiation method and the CPF method, the signal
to noise ratio (SNR) should be as large as possible when recording the spectra. Other
effects like angular dispersion (AD) cause only small changes in GDD, which are below

35



Conclusion

the measurement accuracy of the methods used in this thesis.

A laser amplifier system with a ring-shaped resonator was constructed and the individual
components were characterized with the help of SI. The spectral phase and the GDD
of each component were recorded and the effects of the individual optics on the pulse
length were discussed. It was found that the resonator mirror, the 45° deflection mirror,
the TFP in reflection with s-polarized light have a negligible effect on the relevant phase
terms. The material of the POCKELS cell produces a large dispersion in both polarization
directions, the short pass filter and the Yb:FP glass both provide an additional GDD on
the pulse. A single cycle in the resonator causes the pulse to be stretched by 28 %. After
many resonator cycles, the accumulated dispersion is on average 40 000 fs? in a wavelength
range between 1020—1050 nm and can cause a significant change in the temporal shape,
stretching a 50 fs pulse to 1.6 ps.

The amplifier setup should have the least possible influence on the GDD of the pulse.
It is therefore important to select the components with the major influences carefully.
Since the pump mirror has a large impact on the GDD of the laser pulse, mirrors with
a flat dispersion profile should be prefered. Generally these are short pass filters whose
reflection edge is far from the central wavelength, however, the filter should still be highly
transmissive for the light of the diode stack. The method of SI can therefore be used
to determine the dispersion profile of the short pass filter and help to decide which is
best suited as the pump mirror of the amplifier. Furthermore, by determining the pulse
length behind the amplifier, it is possible to calculate an adjustment for the setup of
the compressor in order to obtain the desired pulse length. SI can be used to further
investigate other influences of any optical component of the CPA system on the pulse.
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7. List of abbreviations

AD

CPA
CPF
FFT

FT

FOD
FROG
FWHM
GDD
GVD
LabVIEW
laser
PFT
POLARIS
SI

SNR
SPIDER
TFP
TOD

VI

YAG
Yb:FP

angular dispersion

chirped pulse amplification

cubic phase function

fast Fourier transform

Fourier transform

fourth order dispersion

frequency resolved optical gating

full width at half maximum

group delay dispersion

group velocity dispersion

Laboratory Virtual Instrumentation Engineering Workbench
light amplification by stimulated emission of radiation

pulse front tilt

Petawatt Optical Laser Amplifier for Radiation Intensive Experiments
spectral interferometry

signal to noise ratio

spectral phase interferometry for direct electric field construction
thin film polarizer

third order dispersion

visual instrument

Yttrium aluminium garnet

Ytterbium doped fluoride phosphate
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Sellmeier equations of the used materials

A. Sellmeier equations of the used materials

In order to evaluate the experimental results of a GDD measurement, the theoretical GVD
of the material should be known. The most commonly used material is fused silica, which
SELLMEIER coefficients were estimated by [13]. The dispersion formula can be written
as

) = |14 0.6961663)2 040794260 0.8974794N
- A2 — (0.0684043um)? | A% — (0.1162414pm)? ' A2 — (9.896 161 um)?’
(A.1)

The material inside a POCKELS cell is called potassium dideuterium phosphate (KD*P)
with the chemical formula KDyPO,. Its dispersion formula is [23]

1.239234)2 14 2
nm_\/l . 39234\ 78889\ (A.2)

B 2 —0.008353114 7 um? i A2 — 88511870 pm?’

The material most commonly used to pump the laser beam is YAG with the chemical
formula Y3Al,015. The dispersion formula is [24]

(A.3)

) 1 2.28200\2 L 3.27644\2
n(\) = .
A2 —0.01185um? A2 — 282.7341m?

The refractive index n(\) is depicted in figure A.1 in a range of 0.2—6 pm. The GVD was
calculated around the centre wavelength Ay = 1030nm and is linear in a good approxi-
mation.
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Fig. A.1: The left side shows the refractive index of fused silica SiOs, KD*P (KDyPO4) and
YAG (Y3Al4012). The GVD is depicted on the right side. The value of n(\) and
GVD()\) at 1030nm is given for every material.
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Characterization of Glan-type polarizers

B. Characterization of Glan-type polarizers

Other optics often used in CPA systems are polarizing prisms based on birefringence
and total reflection. In conventional polarizing prisms, only one polarization direction
is transmitted. This can be accomplished by cutting and cementing both halves of the
prisms in such a way that the other polarization direction suffers total internal reflection
at the cut. Usually it is deflected to the side of the prism. Glan type prisms have the
optical axis in the plane of the entrance face [25].

The spectral phase and GDD was measured for both polarizers for p-polarized and s-
polarized light. The prism were rotated for maximum transmission. The results are
depicted in figure B.1.

1
= — Glan-laser
; p-polarization
5 0.5} 71 |— Glan-laser
= — s-polarization
i | |—— Glan-Thompson
f \‘ p-polarization
2019 fs2 Glan—Thompson
N 2000 F ' 5066 £.2 - s-polarization
A :
=
8
T 1000 |- : |
: 446 fs?
i |
1020 1030 1040 1050

wavelength A in nm

Fig. B.1: GDD measurement of two different polarizing prims, a Glan-laser polarizer and Glan-
Thompson polarizer, which are based on birefringence and total reflection. Both
prisms were measured for p-polarization and s-polarization for a single pass of the
optical component.

The phase measurements and GDD determination were made for one beam pass through
the prism. Both polarization directions show no differences within the error range.
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C. The LabVIEW application

In this section the LabVIEW program developed as part of the Bachelor thesis is ex-
plained. For the creation of the program, an already existing LabVIEW visual instru-
ment (VI) was used to display and store spectra, which is shown in figure C.1.
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C’) wavelength in nm

Fig. C.1: Data aquisition section of spectra. 1.) Selection of the spectrometer, 2.) file locations
for saving the spectrum and spectral phase, 3.) centre wavelength and FWHM, 4.)

file location of recorded spectra for data analysis, 5.) switch between live evaluation
and recorded data analysis.

The program is able to analyze recorded spectra and evaluate live data aquisitions. It
displays the centre wavelength and the FWHM. The aquired data is interpolated at

equidistant frequency points (see section 4.4.4) and Fourier transformed. This is shown
in figure C.2.
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Fig. C.2: Fourier transform into the pseudo time domain. 1.) Selection of the window width
and possible offset from the peak, 2.) Save current Fourier spectrum (red) to a file.

The spectral phase is calculated by an inverse FT of the selected data (white) in figure C.2.

The spectral phase is extracted from the resulting complex values and is unwrapped. The
phase is displayed in a separate panel shown in figure C.3.
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The LabVIEW application
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Fig. C.3: Spectral phase of the measured spectrum. 1.) Delay ¢ ¢y in pm, 2.) Averaged GDD
value over 50 individual measurements with standard deviation. 3.) Order of the
polynomial fit used for phase differentiation.

A polynomial of chosen order is fitted to the spectral phase and differentiated two times
in a certain wavelength interval. The resulting graph in figure C.4 shows the GDD for
the numerical differentiation method and the second derivative of the polynomial.
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Fig. C.4: Retrieved GDD from the spectrum. 1.) GDD at A\g = 1030 nm for both methods
2.) Switch beetween live data evaluation and data analysis of recorded spectra. 3.)
Save GDD values in memory to a file. 4.) Switch of data evaluation of (3) between
numerical and fitting method. 5.) Save current GDD value and its standard deviation
to memory. 6.) Upper and lower boundaries for the polynomial fit. 7.) file locations.

The group delay and the third order dispersion (TOD) of the spectral phase are also
displayed in separate panels.
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Deflection angle of a prism

D. Deflection angle of a prism

The angle of deflection of a prism or a wedge shaped beam splitter can be derived geo-
metrically with the help of figure D.1.

Fig. D.1: Beam evolution in a prism.

The dashed lines intersecting the prism at the points B and C' are perpendicular to the
sides of the prism. Therefore the sum of internal angles of the triangle ABC' can be
written as

180° = (90° — ) + (90° — ¥2) +

Due to the vertical angle theorem the sum of internal angles of the dark shaded triangle
can be written as

1800 = (gOl — 191) + (902 — ’l92) + (1800 — (5)
D.1

= 6= +er— (1+02) = o+ 7. (D.2)

It is assumed that n,; = 1, therefore SNELL’s law states

sinp; = n - sind; = ncos; = \/n? — sin? o, (D.3)

sin gy = n - sin vy @) n - sin(y — )

=siny - (ncosty) —n-sind; cosy

= siny - \/n? — sin? ¢; — sin ¢, cos . (D.4)

Substituting (D.4) into (D.2) results in

d = 1 — 7 + arcsin [sin v/ n? — sin? ¢, — sin ¢, cos fy]. (D.5)
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